1991 IMO

Day 1

1

Given a triangle $ \,ABC,\,$ let $ \,I\,$ be the center of its inscribed circle. The internal bisectors of the angles $ \,A,B,C\,$ meet the opposite sides in $ \,A^{\prime },B^{\prime },C^{\prime }\,$ respectively. Prove that \[ \frac {1}{4} < \frac {AI\cdot BI\cdot CI}{AA^{\prime }\cdot BB^{\prime }\cdot CC^{\prime }} \leq \frac {8}{27}. \]

2

Let $ \,n > 6\,$ be an integer and $ \,a_{1},a_{2},\cdots ,a_{k}\,$ be all the natural numbers less than $ n$ and relatively prime to $ n$. If \[ a_{2} - a_{1} = a_{3} - a_{2} = \cdots = a_{k} - a_{k - 1} > 0, \] prove that $ \,n\,$ must be either a prime number or a power of $ \,2$.

3

Let $ S = \{1,2,3,\cdots ,280\}$. Find the smallest integer $ n$ such that each $ n$-element subset of $ S$ contains five numbers which are pairwise relatively prime.

Day 2

1

Suppose $ \,G\,$ is a connected graph with $ \,k\,$ edges. Prove that it is possible to label the edges $ 1,2,\ldots ,k\,$ in such a way that at each vertex which belongs to two or more edges, the greatest common divisor of the integers labeling those edges is equal to 1. Note: Graph-Definition. A graph consists of a set of points, called vertices, together with a set of edges joining certain pairs of distinct vertices. Each pair of vertices $ \,u,v\,$ belongs to at most one edge. The graph $ G$ is connected if for each pair of distinct vertices $ \,x,y\,$ there is some sequence of vertices $ \,x = v_{0},v_{1},v_{2},\cdots ,v_{m} = y\,$ such that each pair $ \,v_{i},v_{i + 1}\;(0\leq i < m)\,$ is joined by an edge of $ \,G$.

2

Let $ \,ABC\,$ be a triangle and $ \,P\,$ an interior point of $ \,ABC\,$. Show that at least one of the angles $ \,\angle PAB,\;\angle PBC,\;\angle PCA\,$ is less than or equal to $ 30^{\circ }$.

3

An infinite sequence $ \,x_{0},x_{1},x_{2},\ldots \,$ of real numbers is said to be bounded if there is a constant $ \,C\,$ such that $ \, \vert x_{i} \vert \leq C\,$ for every $ \,i\geq 0$. Given any real number $ \,a > 1,\,$ construct a bounded infinite sequence $ x_{0},x_{1},x_{2},\ldots \,$ such that \[ \vert x_{i} - x_{j} \vert \vert i - j \vert^{a}\geq 1 \] for every pair of distinct nonnegative integers $ i, j$.