In a mathematical contest, three problems, $A,B,C$ were posed. Among the participants ther were 25 students who solved at least one problem each. Of all the contestants who did not solve problem $A$, the number who solved $B$ was twice the number who solved $C$. The number of students who solved only problem $A$ was one more than the number of students who solved $A$ and at least one other problem. Of all students who solved just one problem, half did not solve problem $A$. How many students solved only problem $B$?
1966 IMO
Day 1
Let $a,b,c$ be the lengths of the sides of a triangle, and $\alpha, \beta, \gamma$ respectively, the angles opposite these sides. Prove that if \[ a+b=\tan{\frac{\gamma}{2}}(a\tan{\alpha}+b\tan{\beta}) \] the triangle is isosceles.
Prove that the sum of the distances of the vertices of a regular tetrahedron from the center of its circumscribed sphere is less than the sum of the distances of these vertices from any other point in space.
Day 2
Prove that for every natural number $n$, and for every real number $x \neq \frac{k\pi}{2^t}$ ($t=0,1, \dots, n$; $k$ any integer) \[ \frac{1}{\sin{2x}}+\frac{1}{\sin{4x}}+\dots+\frac{1}{\sin{2^nx}}=\cot{x}-\cot{2^nx} \]
Solve the system of equations \[ |a_1-a_2|x_2+|a_1-a_3|x_3+|a_1-a_4|x_4=1 \] \[ |a_2-a_1|x_1+|a_2-a_3|x_3+|a_2-a_4|x_4=1 \] \[ |a_3-a_1|x_1+|a_3-a_2|x_2+|a_3-a_4|x_4=1 \] \[ |a_4-a_1|x_1+|a_4-a_2|x_2+|a_4-a_3|x_3=1 \] where $a_1, a_2, a_3, a_4$ are four different real numbers.
Let $ ABC$ be a triangle, and let $ P$, $ Q$, $ R$ be three points in the interiors of the sides $ BC$, $ CA$, $ AB$ of this triangle. Prove that the area of at least one of the three triangles $ AQR$, $ BRP$, $ CPQ$ is less than or equal to one quarter of the area of triangle $ ABC$. Alternative formulation: Let $ ABC$ be a triangle, and let $ P$, $ Q$, $ R$ be three points on the segments $ BC$, $ CA$, $ AB$, respectively. Prove that $ \min\left\{\left|AQR\right|,\left|BRP\right|,\left|CPQ\right|\right\}\leq\frac14\cdot\left|ABC\right|$, where the abbreviation $ \left|P_1P_2P_3\right|$ denotes the (non-directed) area of an arbitrary triangle $ P_1P_2P_3$.