Let $ABC$ be a triangle with incenter $I$. Suppose the reflection of $AB$ across $CI$ and the reflection of $AC$ across $BI$ intersect at a point $X$. Prove that $XI$ is perpendicular to $BC$.
2024 Canada National Olympiad
Jane writes down $2024$ natural numbers around the perimeter of a circle. She wants the $2024$ products of adjacent pairs of numbers to be exactly the set $\{ 1!, 2!, \ldots, 2024! \}.$ Can she accomplish this?
Let $N{}$ be the number of positive integers with $10$ digits $\overline{d_9d_8\cdots d_0}$ in base $10$ (where $0\le d_i\le9$ for all $i$ and $d_9>0$) such that the polynomial \[d_9x^9+d_8x^8+\cdots+d_1x+d_0\]is irreducible in $\Bbb Q$. Prove that $N$ is even. (A polynomial is irreducible in $\Bbb Q$ if it cannot be factored into two non-constant polynomials with rational coefficients.)
Treasure was buried in a single cell of an $M\times N$ ($2\le M$, $N$) grid. Detectors were brought to find the cell with the treasure. For each detector, you can set it up to scan a specific subgrid $[a,b]\times[c,d]$ with $1\le a\le b\le M$ and $1\le c\le d\le N$. Running the detector will tell you whether the treasure is in the region or not, though it cannot say where in the region the treasure was detected. You plan on setting up $Q$ detectors, which may only be run simultaneously after all $Q$ detectors are ready. In terms of $M$ and $N$, what is the minimum $Q$ required to gaurantee to determine the location of the treasure?
Initially, three non-collinear points, $A$, $B$, and $C$, are marked on the plane. You have a pencil and a double-edged ruler of width $1$. Using them, you may perform the following operations: Mark an arbitrary point in the plane. Mark an arbitrary point on an already drawn line. If two points $P_1$ and $P_2$ are marked, draw the line connecting $P_1$ and $P_2$. If two non-parallel lines $l_1$ and $l_2$ are drawn, mark the intersection of $l_1$ and $l_2$. If a line $l$ is drawn, draw a line parallel to $l$ that is at distance $1$ away from $l$ (note that two such lines may be drawn). Prove that it is possible to mark the orthocenter of $ABC$ using these operations.