Is it possible to cut a square into nine squares and colour one of them white, three of them grey and ve of them black, such that squares of the same colour have the same size and squares of different colours will have different sizes? (3 points)
2009 Tournament Of Towns
Fall 2009
Junior O-Level
There are forty weights: $1, 2, \cdots , 40$ grams. Ten weights with even masses were put on the left pan of a balance. Ten weights with odd masses were put on the right pan of the balance. The left and the right pans are balanced. Prove that one pan contains two weights whose masses differ by exactly $20$ grams. (4 points)
A cardboard circular disk of radius $5$ centimeters is placed on the table. While it is possible, Peter puts cardboard squares with side $5$ centimeters outside the disk so that: (1) one vertex of each square lies on the boundary of the disk; (2) the squares do not overlap; (3) each square has a common vertex with the preceding one. Find how many squares Peter can put on the table, and prove that the first and the last of them must also have a common vertex. (4 points)
We only know that the password of a safe consists of $7$ different digits. The safe will open if we enter $7$ different digits, and one of them matches the corresponding digit of the password. Can we open this safe in less than $7$ attempts? (5 points for Juniors and 4 points for Seniors)
A new website registered $2000$ people. Each of them invited $1000$ other registered people to be their friends. Two people are considered to be friends if and only if they have invited each other. What is the minimum number of pairs of friends on this website? (5 points)
Junior A-Level
Each of $10$ identical jars contains some milk, up to $10$ percent of its capacity. At any time, we can tell the precise amount of milk in each jar. In a move, we may pour out an exact amount of milk from one jar into each of the other $9$ jars, the same amount in each case. Prove that we can have the same amount of milk in each jar after at most $10$ moves. (4 points)
Mike has $1000$ unit cubes. Each has $2$ opposite red faces, $2$ opposite blue faces and $2$ opposite white faces. Mike assembles them into a $10 \times 10 \times 10$ cube. Whenever two unit cubes meet face to face, these two faces have the same colour. Prove that an entire face of the $10 \times 10 \times 10$ cube has the same colour. (6 points)
Find all positive integers $a$ and $b$ such that $(a + b^2)(b + a^2) = 2^m$ for some integer $m.$ (6 points)
Let $ABCD$ be a rhombus. $P$ is a point on side $ BC$ and $Q$ is a point on side $CD$ such that $BP = CQ$. Prove that centroid of triangle $APQ$ lies on the segment $BD.$ (6 points)
We have N objects with weights $1, 2,\cdots , N$ grams. We wish to choose two or more of these objects so that the total weight of the chosen objects is equal to average weight of the remaining objects. Prove that (a) (2 points) if $N + 1$ is a perfect square, then the task is possible; (b) (6 points) if the task is possible, then $N + 1$ is a perfect square.
On an infinite chessboard are placed $2009 \ n \times n$ cardboard pieces such that each of them covers exactly $n^2$ cells of the chessboard. Prove that the number of cells of the chessboard which are covered by odd numbers of cardboard pieces is at least $n^2.$ (9 points)
Anna and Ben decided to visit Archipelago with $2009$ islands. Some pairs of islands are connected by boats which run both ways. Anna and Ben are playing during the trip: Anna chooses the first island on which they arrive by plane. Then Ben chooses the next island which they could visit. Thereafter, the two take turns choosing an island which they have not yet visited. When they arrive at an island which is connected only to islands they had already visited, whoever's turn to choose next would be the loser. Prove that Anna could always win, regardless of the way Ben played and regardless of the way the islands were connected. (12 points for Juniors and 10 points for Seniors)
Senior O-Level
We only know that the password of a safe consists of $7$ different digits. The safe will open if we enter $7$ different digits, and one of them matches the corresponding digit of the password. Can we open this safe in less than $7$ attempts? (5 points for Juniors and 4 points for Seniors)
$A; B; C; D; E$ and $F$ are points in space such that $AB$ is parallel to $DE$, $BC$ is parallel to $EF$, $CD$ is parallel to $FA$, but $AB \neq DE$. Prove that all six points lie in the same plane. (4 points)
Are there positive integers $a; b; c$ and $d$ such that $a^3 + b^3 + c^3 + d^3 =100^{100}$ ? (4 points)
A point is chosen on each side of a regular $2009$-gon. Let $S$ be the area of the $2009$-gon with vertices at these points. For each of the chosen points, reflect it across the midpoint of its side. Prove that the $2009$-gon with vertices at the images of these reflections also has area $S.$ (4 points)
A country has two capitals and several towns. Some of them are connected by roads. Some of the roads are toll roads where a fee is charged for driving along them. It is known that any route from the south capital to the north capital contains at least ten toll roads. Prove that all toll roads can be distributed among ten companies so that anybody driving from the south capital to the north capital must pay each of these companies. (5 points)
Senior A-Level
One hundred pirates played cards. When the game was over, each pirate calculated the amount he won or lost. The pirates have a gold sand as a currency; each has enough to pay his debt. Gold could only change hands in the following way. Either one pirate pays an equal amount to every other pirate, or one pirate receives the same amount from every other pirate. Prove that after several such steps, it is possible for each winner to receive exactly what he has won and for each loser to pay exactly what he has lost. (4 points)
A non-square rectangle is cut into $N$ rectangles of various shapes and sizes. Prove that one can always cut each of these rectangles into two rectangles so that one can construct a square and rectangle, each figure consisting of $N$ pieces. (6 points)
Every edge of a tetrahedron is tangent to a given sphere. Prove that the three line segments joining the points of tangency of the three pairs of opposite edges of the tetrahedron are concurrent. (7 points)
Denote by $[n]!$ the product $ 1 \cdot 11 \cdot 111\cdot ... \cdot \underbrace{111...1}_{\text{n ones}}$.($n$ factors in total). Prove that $[n + m]!$ is divisible by $ [n]! \times [m]!$ (8 points)
Let $XY Z$ be a triangle. The convex hexagon $ABCDEF$ is such that $AB; CD$ and $EF$ are parallel and equal to $XY; Y Z$ and $ZX$, respectively. Prove that area of triangle with vertices at the midpoints of $BC; DE$ and $FA$ is no less than area of triangle $XY Z.$ (8 points)
Anna and Ben decided to visit Archipelago with $2009$ islands. Some pairs of islands are connected by boats which run both ways. Anna and Ben are playing during the trip: Anna chooses the first island on which they arrive by plane. Then Ben chooses the next island which they could visit. Thereafter, the two take turns choosing an island which they have not yet visited. When they arrive at an island which is connected only to islands they had already visited, whoever's turn to choose next would be the loser. Prove that Anna could always win, regardless of the way Ben played and regardless of the way the islands were connected. (12 points for Juniors and 10 points for Seniors)
At the entrance to a cave is a rotating round table. On top of the table are $n$ identical barrels, evenly spaced along its circumference. Inside each barrel is a herring either with its head up or its head down. In a move, Ali Baba chooses from $1$ to $n$ of the barrels and turns them upside down. Then the table spins around. When it stops, it is impossible to tell which barrels have been turned over. The cave will open if the heads of the herrings in all $n$ barrels are up or are all down. Determine all values of $n$ for which Ali Baba can open the cave in a finite number of moves. (11 points)
Spring 2009
Junior O-Level
In a convex $2009$-gon, all diagonals are drawn. A line intersects the $2009$-gon but does not pass through any of its vertices. Prove that the line intersects an even number of diagonals.
Let $a^b$ denote the number $ab$. The order of operations in the expression 7^7^7^7^7^7^7 must be determined by parentheses ($5$ pairs of parentheses are needed). Is it possible to put parentheses in two distinct ways so that the value of the expression be the same?
Alex is going to make a set of cubical blocks of the same size and to write a digit on each of their faces so that it would be possible to form every $30$-digit integer with these blocks. What is the minimal number of blocks in a set with this property? (The digits $6$ and $9$ do not turn one into another.)
We increased some positive integer by $10\%$ and obtained a positive integer. Is it possible that in doing so we decreased the sum of digits exactly by $10\%$ ?
In rhombus $ABCD$, angle $A$ equals $120^o$. Points $M$ and $N$ are chosen on sides $BC$ and $CD$ so that angle $NAM$ equals $30^o$. Prove that the circumcenter of triangle $NAM$ lies on a diagonal of of the rhombus.
Junior A-Level
There are two numbers on a board, $1/2009$ and $1/2008$. Alex and Ben play the following game. At each move, Alex names a number $x$ (of his choice), while Ben responds by increasing one of the numbers on the board (of his choice) by $x$. Alex wins if at some moment one of the numbers on the board becomes $1$. Can Alex win (no matter how Ben plays)?
(a) Find a polygon which can be cut by a straight line into two congruent parts so that one side of the polygon is divided in half while another side at a ratio of $1 : 2$. (b) Does there exist a convex polygon with this property?
In each square of a $101\times 101$ board, except the central one, is placed either a sign " turn" or a sign " straight". The chess piece " car" can enter any square on the boundary of the board from outside (perpendicularly to the boundary). If the car enters a square with the sign " straight" then it moves to the next square in the same direction, otherwise (in case it enters a square with the sign " turn") it turns either to the right or to the left ( its choice). Can one place the signs in such a way that the car never enter the central square?
Consider an infinite sequence consisting of distinct positive integers such that each term (except the rst one) is either an arithmetic mean or a geometric mean of two neighboring terms. Does it necessarily imply that starting at some point the sequence becomes either arithmetic progression or a geometric progression?
A castle is surrounded by a circular wall with $9$ towers which are guarded by knights during the night. Every hour the castle clock strikes and the guards shift to the neighboring towers, each guard always moves in the same direction (either clockwise or counterclockwise). Given that (i) during the night each knight guards every tower (ii) at some hour each tower was guarded by at least two knights (iii) at some hour exactly $5$ towers were guarded by single knights, prove that at some hour one of the towers was unguarded.
Angle $C$ of an isosceles triangle $ABC$ equals $120^o$. Each of two rays emitting from vertex $C$ (inwards the triangle) meets $AB$ at some point ($P_i$) reflects according to the rule the angle of incidence equals the angle of reflection" and meets lateral side of triangle $ABC$ at point $Q_i$ ($i = 1,2$). Given that angle between the rays equals $60^o$, prove that area of triangle $P_1CP_2$ equals the sum of areas of triangles $AQ_1P_1$ and $BQ_2P_2$ ($AP_1 < AP_2$).
Let ${n \choose k}$ be the number of ways that $k$ objects can be chosen (regardless of order) from a set of $n$ objects. Prove that if positive integers k and l are greater than $1$ and less than $n$, then integers ${n \choose k}$ and ${n \choose l}$ have a common divisor greater than $1$.
Senior O-Level
same as Junior O P2 - 1
Several points on the plane are given, no three of them lie on the same line. Some of these points are connected by line segments. Assume that any line that does not pass through any of these points intersects an even number of these segments. Prove that from each point exits an even number of the segments.
For each positive integer $n$, denote by $O(n)$ its greatest odd divisor. Given any positive integers $x_1 = a$ and $x_2 = b$, construct an innite sequence of positive integers as follows: $x_n = O(x_{n-1} + x_{n-2})$, where $n = 3,4,...$ (a) Prove that starting from some place, all terms of the sequence are equal to the same integer. (b) Express this integer in terms of $a$ and $b$.
Several zeros and ones are written down in a row. Consider all pairs of digits (not necessarily adjacent) such that the left digit is $1$ while the right digit is $0$. Let $M$ be the number of the pairs in which $1$ and $0$ are separated by an even number of digits (possibly zero), and let $N$ be the number of the pairs in which $1$ and $0$ are separated by an odd number of digits. Prove that $M \ge N$.
Suppose that $X$ is an arbitrary point inside a tetrahedron. Through each vertex of the tetrahedron, draw a straight line that is parallel to the line segment connecting $X$ with the intersection point of the medians of the opposite face. Prove that these four lines meet at the same point.
Senior A-Level
A rectangle is dissected into several smaller rectangles. Is it possible that for each pair of these rectangles, the line segment connecting their centers intersects some third rectangle?
same as Junior A P4 - 2
Each square of a $10\times 10$ board contains a chip. One may choose a diagonal containing an even number of chips and remove any chip from it. Find the maximal number of chips that can be removed from the board by these operations.
Three planes dissect a parallelepiped into eight hexahedrons such that all of their faces are quadrilaterals (each plane intersects two corresponding pairs of opposite faces of the parallelepiped and does not intersect the remaining two faces). One of the hexahedrons has a circumscribed sphere. Prove that each of these hexahedrons has a circumscribed sphere.
same as Junior A P7 - 5
An integer $n > 1$ is given. Two players in turns mark points on a circle. First Player uses red color while Second Player uses blue color. The game is over when each player marks $n$ points. Then each player nds the arc of maximal length with ends of his color, which does not contain any other marked points. A player wins if his arc is longer (if the lengths are equal, or both players have no such arcs, the game ends in a draw). Which player has a winning strategy?
Initially a number $6$ is written on a blackboard. At $n$-th step an integer $k$ on the blackboard is replaced by $k+gcd(k,n)$. Prove that at each step the number on the blackboard increases either by $1$ or by a prime number.