Let $ ABC$ be acute triangle. The circle with diameter $ AB$ intersects $ CA,\, CB$ at $ M,\, N,$ respectively. Draw $ CT\perp AB$ and intersects above circle at $ T$, where $ C$ and $ T$ lie on the same side of $ AB$. $ S$ is a point on $ AN$ such that $ BT = BS$. Prove that $ BS\perp SC$.
2007 China Northern MO
Day 1
Let $ a,\, b,\, c$ be side lengths of a triangle and $ a+b+c = 3$. Find the minimum of \[ a^{2}+b^{2}+c^{2}+\frac{4abc}{3}\]
Sequence $ \{a_{n}\}$ is defined by $ a_{1}= 2007,\, a_{n+1}=\frac{a_{n}^{2}}{a_{n}+1}$ for $ n \ge 1.$ Prove that $ [a_{n}] =2007-n$ for $ 0 \le n \le 1004,$ where $ [x]$ denotes the largest integer no larger than $ x.$
For every point on the plane, one of $ n$ colors are colored to it such that: $ (1)$ Every color is used infinitely many times. $ (2)$ There exists one line such that all points on this lines are colored exactly by one of two colors. Find the least value of $ n$ such that there exist four concyclic points with pairwise distinct colors.
Day 2
Let $ \alpha$, $ \beta$ be acute angles. Find the maximum value of \[ \frac{\left(1-\sqrt{\tan\alpha\tan\beta}\right)^{2}}{\cot\alpha+\cot\beta}\]
Let $ f$ be a function given by $ f(x) = \lg(x+1)-\frac{1}{2}\cdot\log_{3}x$. a) Solve the equation $ f(x) = 0$. b) Find the number of the subsets of the set \[ \{n | f(n^{2}-214n-1998) \geq 0,\ n \in\mathbb{Z}\}.\]
Let $ n$ be a positive integer and $ [ \ n ] = a.$ Find the largest integer $ n$ such that the following two conditions are satisfied: $ (1)$ $ n$ is not a perfect square; $ (2)$ $ a^{3}$ divides $ n^{2}$.
The inradius of triangle $ ABC$ is $ 1$ and the side lengths of $ ABC$ are all integers. Prove that triangle $ ABC$ is right-angled.