An arithmetic progression of natural numbers of length $10$ and with difference $11$ is given. Prove that the product of the numbers in this progression is divisible by $10!$.
2023 Grosman Mathematical Olympiad
A "Hishgad" lottery ticket contains the numbers $1$ to $mn$, arranged in some order in a table with $n$ rows and $m$ columns. It is known that the numbers in each row increase from left to right and the numbers in each column increase from top to bottom. An example for $n=3$ and $m=4$: [asy][asy] size(3cm); Label[][] numbers = {{"$1$", "$2$", "$3$", "$9$"}, {"$4$", "$6$", "$7$", "$10$"}, {"$5$", "$8$", "$11$", "$12$"}}; for (int i=0; i<5;++i) { draw((i,0)--(i,3)); } for (int i=0; i<4;++i) { draw((0,i)--(4,i)); } for (int i=0; i<4;++i){ for (int j=0; j<3;++j){ label(numbers[2-j][i], (i+0.5, j+0.5)); }} [/asy][/asy] When the ticket is bought the numbers are hidden, and one must "scratch" the ticket to reveal them. How many cells does it always suffice to reveal in order to determine the whole table with certainty?
Find all pairs of polynomials $p$, $q$ with complex coefficients so that \[p(x)\cdot q(x)=p(q(x)).\]
Let $q$ be an odd prime number. Prove that it is impossible for all $(q-1)$ numbers \[1^2+1+q, 2^2+2+q, \dots, (q-1)^2+(q-1)+q\]to be products of two primes (not necessarily distinct).
Consider the sequence of natural numbers $a_n$ defined as $a_0=4$ and $a_{n+1}=\frac{a_n(a_n-1)}{2}$ for each $n\geq 0$. Define a new sequence $b_n$ as follows: $b_n=0$ if $a_n$ is even, and $b_n=1$ if $a_n$ is odd. Prove that for each natural $m$, the sequence \[b_m, b_{m+1}, b_{m+2},b_{m+3}, \dots\]is not periodic.
Adam has a secret natural number $x$ which Eve is trying to discover. At each stage Eve may only ask questions of the form "is $x+n$ a prime number?" for some natural number $n$ of her choice. Prove that Eve may discover $x$ using finitely many questions.
The plane is colored with two colors so that the following property holds: for each real $a>0$ there is an equilateral triangle of side length $a$ whose $3$ vertices are of the same color. Prove that for any three numbers $a,b,c>0$ for which the sum of any two is greater than the third there is a triangle with sides $a$, $b$, and $c$ whose $3$ vertices are of the same color.