Problem

Source:

Tags: Grade 10, 1997



Given real numbers $a_1\leq{a_2}\leq{a_3}$ and $b_1\leq{b_2}\leq{b_3}$ such that $$a_1+a_2+a_3=b_1+b_2+b_3,$$$$a_1a_2+a_2a_3+a_1a_3=b_1b_2+b_2b_3+b_1b_3.$$Prove that if $a_1\leq{b_1},$ then $a_3\leq{b_3}$