2019 Azerbaijan IMO TST

Day 1

1

Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that \[ f(xy) = yf(x) + x + f(f(y) - f(x)) \]for all $x,y \in \mathbb{R}$.

2

Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.

3

Four positive integers $x,y,z$ and $t$ satisfy the relations \[ xy - zt = x + y = z + t. \]Is it possible that both $xy$ and $zt$ are perfect squares?

Day 2

1

100 couples are invited to a traditional Modolvan dance. The $200$ people stand in a line, and then in a $\textit{step}$, (not necessarily adjacent) many swap positions. Find the least $C$ such that whatever the initial order, they can arrive at an ordering where everyone is dancing next to their partner in at most $C$ steps.

2

Let $ABC$ ($BC > AC$) be an acute triangle with circumcircle $k$ centered at $O$. The tangent to $k$ at $C$ intersects the line $AB$ at the point $D$. The circumcircles of triangles $BCD, OCD$ and $AOB$ intersect the ray $CA$ (beyond $A$) at the points $Q, P$ and $K$, respectively, such that $P \in (AK)$ and $K \in (PQ)$. The line $PD$ intersects the circumcircle of triangle $BKQ$ at the point $T$, so that $P$ and $T$ are in different halfplanes with respect to $BQ$. Prove that $TB = TQ$.

3

Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.