2019 Azerbaijan BMO TST

1

For positive integers $m$ and $n$, let $d(m, n)$ be the number of distinct primes that divide both $m$ and $n$. For instance, $d(60, 126) = d(2^2 \cdot 3 \cdot 5, 2 \cdot 3^2 \cdot 7) = 2.$ Does there exist a sequence $(a_n)$ of positive integers such that: $a_1 \geq 2018^{2018};$ $a_m \leq a_n$ whenever $m \leq n$; $d(m, n) = d(a_m, a_n)$ for all positive integers $m\neq n$? (Dominic Yeo, United Kingdom)

2

Let $ABC$ be a triangle inscribed in circle $\Gamma$ with center $O$. Let $H$ be the orthocenter of triangle $ABC$ and let $K$ be the midpoint of $OH$. Tangent of $\Gamma$ at $B$ intersects the perpendicular bisector of $AC$ at $L$. Tangent of $\Gamma$ at $C$ intersects the perpendicular bisector of $AB$ at $M$. Prove that $AK$ and $LM$ are perpendicular. by Michael Sarantis, Greece

3

Let $ a, b, c$ be positive real numbers such that $ abc = 1. $ Prove that: $$ 2 (a^ 2 + b^ 2 + c^ 2) \left (\frac 1 {a^ 2} + \frac 1{b^ 2}+ \frac 1{c^2}\right)\geq 3(a+ b + c + ab + bc + ca).$$

4

Let $N$ be an odd number, $N\geq 3$. $N$ tennis players take part in a championship. Before starting the championship, a commission puts the players in a row depending on how good they think the players are. During the championship, every player plays with every other player exactly once, and each match has a winner. A match is called suprising if the winner was rated lower by the commission. At the end of the tournament, players are arranged in a line based on the number of victories they have achieved. In the event of a tie, the commission's initial order is used to decide which player will be higher. It turns out that the final order is exactly the same as the commission's initial order. What is the maximal number of suprising matches that could have happened.