Let $\triangle ABC$ be a acute triangle. Let $H$ the foot of the C-altitude in $AB$ such that $AH=3BH$, let $M$ and $N$ the midpoints of $AB$ and $AC$ and let $P$ be a point such that $NP=NC$ and $CP=CB$ and $B$, $P$ are located on different sides of the line $AC$. Prove that $\measuredangle APM=\measuredangle PBA$.
2017 Azerbaijan BMO TST
Day 1
Find the smallest constant $C > 0$ for which the following statement holds: among any five positive real numbers $a_1,a_2,a_3,a_4,a_5$ (not necessarily distinct), one can always choose distinct subscripts $i,j,k,l$ such that \[ \left| \frac{a_i}{a_j} - \frac {a_k}{a_l} \right| \le C. \]
Find all funtions $f:\mathbb R\to\mathbb R$ such that: $$f(xy-1)+f(x)f(y)=2xy-1$$for all $x,y\in \mathbb{R}$.
Let $\tau(n)$ be the number of positive divisors of $n$. Let $\tau_1(n)$ be the number of positive divisors of $n$ which have remainders $1$ when divided by $3$. Find all positive integral values of the fraction $\frac{\tau(10n)}{\tau_1(10n)}$.
Day 2
Let $a, b,c$ be positive real numbers. Prove that $ \sqrt{a^3b+a^3c}+\sqrt{b^3c+b^3a}+\sqrt{c^3a+c^3b}\ge \frac43 (ab+bc+ca)$
Determine all positive integers $n$ such that all positive integers less than or equal to $n$ and relatively prime to $n$ are pairwise coprime.
Two circles, $\omega_1$ and $\omega_2$, centered at $O_1$ and $O_2$, respectively, meet at points $A$ and $B$. A line through $B$ meet $\omega_1$ again at $C$, and $\omega_2$ again at $D$. The tangents to $\omega_1$ and $\omega_2$ at $C$ and $D$, respectively, meet at $E$, and the line $AE$ meets the circle $\omega$ through $A, O_1,O_2$ again at $F$. Prove that the length of the segment $EF$ is equal to the diameter of $\omega$.
The leader of an IMO team chooses positive integers $n$ and $k$ with $n > k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an $n$-digit binary string, and the deputy leader writes down all $n$-digit binary strings which differ from the leader’s in exactly $k$ positions. (For example, if $n = 3$ and $k = 1$, and if the leader chooses $101$, the deputy leader would write down $001, 111$ and $100$.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader’s string. What is the minimum number of guesses (in terms of $n$ and $k$) needed to guarantee the correct answer?