In a convex quadrilateral $ABCD$, the diagonals intersect at $O$, and $M$ and $N$ are points on the segments $OA$ and $OD$ respectively. Suppose $MN$ is parallel to $AD$ and $NC$ is parallel to $AB$. Prove that $\angle ABM=\angle NCD$.
2023 Singapore Junior Math Olympiad
2nd Round
What is the maximum number of integers that can be chosen from $1,2,\dots,99$ so that the chosen integers can be arranged in a circle with the property that the product of every pair of neighbouring integers is 3-digit number?
Define a domino to be a $1\times 2$ rectangular block. A $2023\times 2023$ square grid is filled with non-overlapping dominoes, leaving a single $1\times 1$ gap. John then repeatedly slides dominoes into the gap; each domino is moved at most once. What is the maximum number of times that John could have moved a domino? (Example: In the $3\times 3$ grid shown below, John could move 2 dominoes: $D$, followed by $A$.) [asy][asy] unitsize(18); draw((0,0)--(3,0)--(3,3)--(0,3)--(0,0)--cycle); draw((0,1)--(3,1)); draw((2,0)--(2,3)); draw((1,1)--(1,3)); label("A",(0.5,2)); label("B",(1.5,2)); label("C",(2.5,2)); label("D",(1,0.5)); [/asy][/asy]
Two distinct 2-digit prime numbers $p,q$ can be written one after the other in 2 different ways to form two 4-digit numbers. For example, 11 and 13 yield 1113 and 1311. If the two 4-digit numbers formed are both divisible by the average value of $p$ and $q$, find all possible pairs $\{p,q\}$.
Find all positive integers $k$ such that there exists positive integers $a, b$ such that \[a^2+4=(k^2-4)b^2.\]