2010 Peru Iberoamerican Team Selection Test

Day 1

P1

Let $n$ be a positive integer. We know that the set $I_n = \{ 1, 2,\ldots , n\}$ has exactly $2^n$ subsets, so there are $8^n$ ordered triples $(A, B, C)$, where $A, B$, and $C$ are subsets of $I_n$. For each of these triples we consider the number $\mid A \cap B \cap C\mid$. Prove that the sum of the $8^n$ numbers considered is a multiple of $n$. Clarification: $\mid Y\mid$ denotes the number of elements in the set $Y$.

P2

For each positive integer $k$, let $S(k)$ be the sum of the digits of $k$ in the decimal system. Find all positive integers N for which there exist positive integers $a$,$b$,$c$, coprime two by two, such that: $S(ab) = S(bc) = S(ca) = N$.

P3

Let $C_1$ and $C_2$ be two concentric circles with center $O$, in such a way that the radius of $C_1$ is smaller than the radius of $C_2$. Let $P$ be a point other than $O$ that is in the interior of $C_1$, and $L$ a line through $P$ and intersects $C_1$ at $A$ and $B$. Ray $\overrightarrow{OB}$ intersects $C_2$ at $C$. Determine the locus that determines the circumcenter of triangle $ABC$ as $L$ varies.

Day 2

P4

Find the smallest integer $k > 1$ for which $n^k-n$ is a multiple of $2010$ for every integer positive $n$.

P5

The trapeze $ABCD$ with bases $AB$ and $CD$ is inscribed in a circle $\Gamma$. Let $X$ be a variable point of the arc $\overarc{AB}$ that does not contain either $C$ or $D$. Let $Y$ be the point of intersection of $AB$ and $DX$, and let $Z$ be the point of the segment $CX$ such that $\frac{XZ}{XC}=\frac{AY}{AB}$. Prove that the measure of the angle $\angle AZX$ does not depend on the choice of $X$.

P6

On an $n$ × $n$ board, the set of all squares that are located on or below the main diagonal of the board is called the$n-ladder$. For example, the following figure shows a $3-ladder$: [asy][asy] draw((0,0)--(0,3)); draw((0,0)--(3,0)); draw((0,1)--(3,1)); draw((1,0)--(1,3)); draw((0,2)--(2,2)); draw((2,0)--(2,2)); draw((0,3)--(1,3)); draw((3,0)--(3,1)); [/asy][/asy] In how many ways can a $99-ladder$ be divided into some rectangles, which have their sides on grid lines, in such a way that all the rectangles have distinct areas?