Let $G$ be a graph on $n\geq 6$ vertices and every vertex is of degree at least 3. If $C_{1}, C_{2}, \dots, C_{k}$ are all the cycles in $G$, determine all possible values of $\gcd(|C_{1}|, |C_{2}|, \dots, |C_{k}|)$ where $|C|$ denotes the number of vertices in the cycle $C$.
2023 Bulgaria National Olympiad
Day 1
Let $ABC$ be an acute triangle and $A_{1}, B_{1}, C_{1}$ be the touchpoints of the excircles with the segments $BC, CA, AB$ respectively. Let $O_{A}, O_{B}, O_{C}$ be the circumcenters of $\triangle AB_{1}C_{1}, \triangle BC_{1}A_{1}, \triangle CA_{1}B_{1}$ respectively. Prove that the lines through $O_{A}, O_{B}, O_{C}$ respectively parallel to the internal angle bisectors of $\angle A,\angle B, \angle C$ are concurrent.
Let $f(x)$ be a polynomial with positive integer coefficients. For every $n\in\mathbb{N}$, let $a_{1}^{(n)}, a_{2}^{(n)}, \dots , a_{n}^{(n)}$ be fixed positive integers that give pairwise different residues modulo $n$ and let \[g(n) = \sum\limits_{i=1}^{n} f(a_{i}^{(n)}) = f(a_{1}^{(n)}) + f(a_{2}^{(n)}) + \dots + f(a_{n}^{(n)})\]Prove that there exists a constant $M$ such that for all integers $m>M$ we have $\gcd(m, g(m))>2023^{2023}$.
Day 2
Prove that there exists a unique point $M$ on the side $AD$ of a convex quadrilateral $ABCD$ such that \[\sqrt{S_{ABM}}+\sqrt{S_{CDM}} = \sqrt{S_{ABCD}}\]if and only if $AB\parallel CD$.
For every positive integer $n$ determine the least possible value of the expression \[|x_{1}|+|x_{1}-x_{2}|+|x_{1}+x_{2}-x_{3}|+\dots +|x_{1}+x_{2}+\dots +x_{n-1}-x_{n}|\]given that $x_{1}, x_{2}, \dots , x_{n}$ are real numbers satisfying $|x_{1}|+|x_{2}|+\dots+|x_{n}| = 1$.
In a class of $26$ students, everyone is being graded on five subjects with one of three possible marks. Prove that if $25$ of these students have received their marks, then we can grade the last one in such a way that their marks differ from these of any other student on at least two subjects.