Let $ABC$ be an acute triangle with incenter $I$. On its circumcircle, let $M_A$, $M_B$ and $M_C$ be the midpoints of minor arcs $BC, CA$ and $AB$, respectively. Prove that the reflection $M_A$ over the line $IM_B$ lies on the circumcircle of the triangle $IM_BM_C$.
2023 Switzerland - Final Round
Day 1
The wizard Albus and Brian are playing a game on a square of side length $2n+1$ meters surrounded by lava. In the centre of the square there sits a toad. In a turn, a wizard chooses a direction parallel to a side of the square and enchants the toad. This will cause the toad to jump $d$ meters in the chosen direction, where $d$ is initially equal to $1$ and increases by $1$ after each jump. The wizard who sends the toad into the lava loses. Albus begins and they take turns. Depending on $n$, determine which wizard has a winning strategy.
Let $x,y$ and $a_0, a_1, a_2, \cdots $ be integers satisfying $a_0 = a_1 = 0$, and $$a_{n+2} = xa_{n+1}+ya_n+1$$for all integers $n \geq 0$. Let $p$ be any prime number. Show that $\gcd(a_p,a_{p+1})$ is either equal to $1$ or greater than $\sqrt{p}$.
Determine the smallest possible value of the expression $$\frac{ab+1}{a+b}+\frac{bc+1}{b+c}+\frac{ca+1}{c+a}$$where $a,b,c \in \mathbb{R}$ satisfy $a+b+c = -1$ and $abc \leqslant -3$
Day 2
Let $D$ be the set of real numbers excluding $-1$. Find all functions $f: D \to D$ such that for all $x,y \in D$ satisfying $x \neq 0$ and $y \neq -x$, the equality $$(f(f(x))+y)f \left(\frac{y}{x} \right)+f(f(y))=x$$holds.
Find all positive integers $n>2$ such that $$ n! \mid \prod_{ p<q\le n, p,q \, \text{primes}} (p+q)$$
In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$. Prove that $B, C, X,$ and $Y$ are concyclic.
Let $n$ be a positive integer. We start with $n$ piles of pebbles, each initially containing a single pebble. One can perform moves of the following form: choose two piles, take an equal number of pebbles from each pile and form a new pile out of these pebbles. Find (in terms of $n$) the smallest number of nonempty piles that one can obtain by performing a finite sequence of moves of this form.