Niek has $16$ square cards that are yellow on one side and red on the other. He puts down the cards to form a $4 \times 4$-square. Some of the cards show their yellow side and some show their red side. For a colour pattern he calculates the monochromaticity as follows. For every pair of adjacent cards that share a side he counts $+1$ or $-1$ according to the following rule: $+1$ if the adjacent cards show the same colour, and $-1$ if the adjacent cards show different colours. Adding this all together gives the monochromaticity (which might be negative). For example, if he lays down the cards as below, there are $15$ pairs of adjacent cards showing the same colour, and $9$ such pairs showing different colours. [asy][asy] unitsize(1 cm); int i; fill(shift((0,0))*((0,0)--(1,0)--(1,1)--(0,1)--cycle), yellow); fill(shift((1,0))*((0,0)--(1,0)--(1,1)--(0,1)--cycle), yellow); fill(shift((2,0))*((0,0)--(1,0)--(1,1)--(0,1)--cycle), yellow); fill(shift((3,0))*((0,0)--(1,0)--(1,1)--(0,1)--cycle), yellow); fill(shift((0,1))*((0,0)--(1,0)--(1,1)--(0,1)--cycle), yellow); fill(shift((1,1))*((0,0)--(1,0)--(1,1)--(0,1)--cycle), red); fill(shift((2,1))*((0,0)--(1,0)--(1,1)--(0,1)--cycle), yellow); fill(shift((3,1))*((0,0)--(1,0)--(1,1)--(0,1)--cycle), yellow); fill(shift((0,2))*((0,0)--(1,0)--(1,1)--(0,1)--cycle), yellow); fill(shift((1,2))*((0,0)--(1,0)--(1,1)--(0,1)--cycle), yellow); fill(shift((2,2))*((0,0)--(1,0)--(1,1)--(0,1)--cycle), yellow); fill(shift((3,2))*((0,0)--(1,0)--(1,1)--(0,1)--cycle), red); fill(shift((0,3))*((0,0)--(1,0)--(1,1)--(0,1)--cycle), red); fill(shift((1,3))*((0,0)--(1,0)--(1,1)--(0,1)--cycle), yellow); fill(shift((2,3))*((0,0)--(1,0)--(1,1)--(0,1)--cycle), yellow); fill(shift((3,3))*((0,0)--(1,0)--(1,1)--(0,1)--cycle), red); for (i = 0; i <= 4; ++i) { draw((i,0)--(i,4)); draw((0,i)--(4,i)); } [/asy][/asy] The monochromaticity of this pattern is thus $15 \cdot (+1) + 9 \cdot (-1) = 6$. Niek investigates all possible colour patterns and makes a list of all possible numbers that appear at least once as a value of the monochromaticity. That is, Niek makes a list with all numbers such that there exists a colour pattern that has this number as its monochromaticity. (a) What are the three largest numbers on his list? (Explain your answer. If your answer is, for example, $ 12$, $9$ and $6$, then you have to show that these numbers do in fact appear on the list by giving a colouring for each of these numbers, and furthermore prove that the numbers $7$, $ 8$, $10$, $11$ and all numbers bigger than $ 12$ do not appear.) (b) What are the three smallest (most negative) numbers on his list? (c) What is the smallest positive number (so, greater than $0$) on his list?
2021 Dutch Mathematical Olympiad
We consider sports tournaments with $n \ge 4$ participating teams and where every pair of teams plays against one another at most one time. We call such a tournament balanced if any four participating teams play exactly three matches between themselves. So, not all teams play against one another. Determine the largest value of $n$ for which a balanced tournament with $n$ teams exists.
A frog jumps around on the grid points in the plane, from one grid point to another. The frog starts at the point $(0, 0)$. Then it makes, successively, a jump of one step horizontally, a jump of $2$ steps vertically, a jump of $3$ steps horizontally, a jump of $4$ steps vertically, et cetera. Determine all $n > 0$ such that the frog can be back in $(0, 0)$ after $n$ jumps.
In triangle $ABC$ we have $\angle ACB = 90^o$. The point $M$ is the midpoint of $AB$. The line through $M$ parallel to $BC$ intersects $AC$ in $D$. The midpoint of line segment $CD$ is $E$. The lines $BD$ and $CM$ are perpendicular. (a) Prove that triangles $CME$ and $ABD$ are similar. (b) Prove that $EM$ and $AB$ are perpendicular. [asy][asy] unitsize(1 cm); pair A, B, C, D, E, M; A = (0,0); B = (4,0); C = (2.6,2); M = (A + B)/2; D = (A + C)/2; E = (C + D)/2; draw(A--B--C--cycle); draw(C--M--D--B); dot("$A$", A, SW); dot("$B$", B, SE); dot("$C$", C, N); dot("$D$", D, NW); dot("$E$", E, NW); dot("$M$", M, S); [/asy][/asy] Be aware: the figure is not drawn to scale.
We consider an integer $n > 1$ with the following property: for every positive divisor $d$ of $n$ we have that $d + 1$ is a divisor of$ n + 1$. Prove that $n$ is a prime number.