2015 Auckland Mathematical Olympiad

Juniors / Division 1

1

Is it possible to replace stars with plusses or minusses in the following expression $$1 \star 2 \star 3 \star 4 \star 5 \star 6 \star 7 \star 8 \star 9 \star 10 = 0$$so that to obtain a true equality?

2

On the table there are $2016$ coins. Two players play the following game making alternating moves. In one move it is allowed to take $1, 2$ or $3$ coins. The player who takes the last coin wins. Which player has a winning strategy?

3

Several pounamu stones weigh altogether $10$ tons and none of them weigh more than $1$ tonne. A truck can carry a load which weight is at most $3$ tons. What is the smallest number of trucks such that bringing all stones from the quarry will be guaranteed?

4

The bisector of angle $A$ in parallelogram $ABCD$ intersects side $BC$ at $M$ and the bisector of $\angle AMC$ passes through point $D$. Find angles of the parallelogram if it is known that $\angle MDC = 45^o$.

Seniors / Division 2

1

The teacher wrote on the blackboard quadratic polynomial $x^2 + 10x + 20$. Then in turn each student in the class either increased or decreased by $1$ either the coefficient of $x$ or the constant term. At the end the quadratic polynomial became $x^2+20x+10$. Is it true that at certain moment a quadratic polynomial with integer roots was on the board?

2

A convex quadrillateral $ABCD$ is given and the intersection point of the diagonals is denoted by $O$. Given that the perimeters of the triangles $ABO, BCO, CDO,ADO$ are equal, prove that $ABCD$ is a rhombus.

3

In the calculation $HE \times EH = WHEW$, where different letters stand for different nonzero digits. Find the values of all the letters.

4

In the planetary system of the star Zoolander there are $2015$ planets. On each planet an astronomer lives who observes the closest planet into his telescope (the distances between planets are all different). Prove that there is a planet who is observed by nobody.