Actually, this is an MO I participated in but it's really hard to get problems from this year if you don't know some people. P1. Let $f$ be a function satisfying $f(x + 1) + f(x - 1) = \sqrt{2} f(x)$, for all reals $x$. If $f(x - 1) = a$ and $f(x) = b$, determine the value of $f(x + 4)$. RemarksWe found out that this is the modified version of a problem from LMNAS UGM 2008, Senior High School Level, on its First Round. This is also the same with Arthur Engel's "Problem Solving Strategies" Book, Example Problem E2. P2. The sequence of "Sanga" numbers is formed by the following procedure. i. Pick a positive integer $n$. ii. The first term of the sequence $(U_1)$ is $9n$. iii. For $k \geq 2$, $U_k = U_{k-1} - 17$. Sanga$[r]$ is the "Sanga" sequence whose smallest positive term is $r$. As an example, for $n = 3$, the "Sanga" sequence which is formed is $27, 10, -7, -24, -41, \ldots.$ Since the smallest positive term of such sequence is $10$, for $n = 3$, the sequence formed is called Sanga$[10]$. For $n \leq 100$, determine the sum of all $n$ which makes the sequence Sanga$[4]$. P3. The cube $ABCD.EFGH$ has an edge length of 6 cm. Point $R$ is on the extension of line (segment) $EH$ with $EH : ER = 1 : 2$, such that triangle $AFR$ cuts edge $GH$ at point $P$ and cuts edge $DH$ at $Q$. Determine the area of the region bounded by the quadrilateral $AFPQ$. P4. Ten skydivers are planning to form a circle formation when they are in the air by holding hands with both adjacent skydivers. If each person has 2 choices for the colour of his/her uniform to be worn, that is, red or white, determine the number of different colour formations that can be constructed. P5. After pressing the start button, a game machine works according to the following procedure. i. It picks 7 numbers randomly from 1 to 9 (these numbers are integers, not stated but corrected) without showing it on screen. ii. It shows the product of the seven chosen numbes on screen. iii. It shows a calculator menu (it does not function as a calculator) on screen and asks the player whether the sum of the seven chosen numbers is odd or even. iv. Shows the seven chosen numbers and their sum and products. v. Releases a prize if the guess of the player was correct or shows the message "Try again" on screen if the guess by the player was incorrect. (Although the player is not allowed to guess with those numbers, and the machine's procedures are started all over again.) Kiki says that this game is really easy since the probability of winning is greater than $90$%. Explain, whether you agree with Kiki.
2019 Indonesia Juniors
P6. Determine all integer pairs $(x, y)$ satisfying the following system of equations. \[ \begin{cases} x + y - 6 &= \sqrt{2x + y + 1} \\ x^2 - x &= 3y + 5 \end{cases} \] P7. Determine the sum of all (positive) integers $n \leq 2019$ such that $1^2 + 2^2 + 3^2 + \cdots + n^2$ is an odd number and $1^1 + 2^2 + 3^3 + \cdots + n^n$ is also an odd number. P8. Two quadrilateral-based pyramids where the length of all its edges are the same, have their bases coincide, forming a new 3D figure called "8-plane" (octahedron). If the volume of such "8-plane" (octahedron) is $a^3\sqrt{2}$ cm$^3$, determine the volume of the largest sphere that can be fit inside such "8-plane" (octahedron). P9. Six-digit numbers $\overline{ABCDEF}$ with distinct digits are arranged from the digits 1, 2, 3, 4, 5, 6, 7, 8 with the rule that the sum of the first three numbers and the sum of the last three numbers are the same. Determine the probability that such arranged number has the property that either the first or last three digits (might be both) form an arithmetic sequence or a geometric sequence. Remarks (Answer spoiled)It's a bit ambiguous whether the first or last three digits mentioned should be in that order, or not. If it should be in that order, the answer to this problem would be $\frac{1}{9}$, whereas if not, it would be $\frac{1}{3}$. Some of us agree that the correct interpretation should be the latter (which means that it's not in order) and the answer should be $\frac{1}{3}$. However since this is an essay problem, your interpretation can be written in your solution as well and it's left to the judges' discretion to accept your interpretation, or not. This problem is very bashy. P10. $X_n$ denotes the number which is arranged by the digit $X$ written (concatenated) $n$ times. As an example, $2_{(3)} = 222$ and $5_{(2)} = 55$. For $A, B, C \in \{1, 2, \ldots, 9\}$ and $1 \leq n \leq 2019$, determine the number of ordered quadruples $(A, B, C, n)$ satisfying: \[ A_{(2n)} = 2 \left ( B_{(n)} \right ) + \left ( C_{(n)} \right )^2. \]