p1. It is known that $f$ is a function such that $f(x)+2f\left(\frac{1}{x}\right)=3x$ for every $x\ne 0$. Find the value of $x$ that satisfies $f(x) = f(-x)$. p2. It is known that ABC is an acute triangle whose vertices lie at circle centered at point $O$. Point $P$ lies on side $BC$ so that $AP$ is the altitude of triangle ABC. If $\angle ABC + 30^o \le \angle ACB$, prove that $\angle COP + \angle CAB < 90^o$. p3. Find all natural numbers $a, b$, and $c$ that are greater than $1$ and different, and fulfills the property that $abc$ divides evenly $bc + ac + ab + 2$. p4. Let $A, B$, and $ P$ be the nails planted on the board $ABP$ . The length of $AP = a$ units and $BP = b$ units. The board $ABP$ is placed on the paths $x_1x_2$ and $y_1y_2$ so that $A$ only moves freely along path $x_1x_2$ and only moves freely along the path $y_1y_2$ as in following image. Let $x$ be the distance from point $P$ to the path $y_1y_2$ and y is with respect to the path $x_1x_2$ . Show that the equation for the path of the point $P$ is $\frac{x^2}{b^2}+\frac{y^2}{a^2}=1$. p5. There are three boxes $A, B$, and $C$ each containing $3$ colored white balls and $2$ red balls. Next, take three ball with the following rules: 1. Step 1 Take one ball from box $A$. 2. Step 2 $\bullet$ If the ball drawn from box $A$ in step 1 is white, then the ball is put into box $B$. Next from box $B$ one ball is drawn, if it is a white ball, then the ball is put into box $C$, whereas if the one drawn is red ball, then the ball is put in box $A$. $\bullet$ If the ball drawn from box $A$ in step 1 is red, then the ball is put into box $C$. Next from box $C$ one ball is taken. If what is drawn is a white ball then the ball is put into box $A$, whereas if the ball drawn is red, the ball is placed in box $B$. 3. Step 3 Take one ball each from squares $A, B$, and $C$. What is the probability that all the balls drawn in step 3 are colored red?
2013 Indonesia Juniors
p1. Is there any natural number n such that $n^2 + 5n + 1$ is divisible by $49$ ? Explain. p2. It is known that the parabola $y = ax^2 + bx + c$ passes through the points $(-3,4)$ and $(3,16)$, and does not cut the $x$-axis. Find all possible abscissa values for the vertex point of the parabola. p3. It is known that $T.ABC$ is a regular triangular pyramid with side lengths of $2$ cm. The points $P, Q, R$, and $S$ are the centroids of triangles $ABC$, $TAB$, $TBC$ and $TCA$, respectively . Determine the volume of the triangular pyramid $P.QRS$ . p4. At an event invited $13$ special guests consisting of $ 8$ people men and $5$ women. Especially for all those special guests provided $13$ seats in a special row. If it is not expected two women sitting next to each other, determine the number of sitting positions possible for all those special guests. p5. A table of size $n$ rows and $n$ columns will be filled with numbers $ 1$ or $-1$ so that the product of all the numbers in each row and the product of all the numbers in each column is $-1$. How many different ways to fill the table?