Two circles $k_1(O_1,R)$ and $k_2(O_2,r)$ are given in the plane such that $R \ge \sqrt2 r$ and $$O_1O_2 =\sqrt{R^2 +r^2 - r\sqrt{4R^2 +r^2}}.$$Let $A$ be an arbitrary point on $k_1$. The tangents from $A$ to $k_2$ touch $k_2$ at $B$ and $C$ and intersect $k_1$ again at $D$ and $E$, respectively. Prove that $BD \cdot CE = r^2$
1994 Bulgaria National Olympiad
Day 1
Find all functions $f : R \to R$ such that $x f(x)-y f(y) = (x-y)f(x+y)$ for all $x,y \in R$.
Let $p$ be a prime number, determine all positive integers $(x, y, z)$ such that: $x^p + y^p = p^z$
Day 2
Let $ABC$ be a triangle with incenter $I$, and let the tangency points of its incircle with its sides $AB$, $BC$, $CA$ be $C'$, $A'$ and $B'$ respectively. Prove that the circumcenters of $AIA'$, $BIB'$, and $CIC'$ are collinear.
Let $k$ be a positive integer and $r_n$ be the remainder when ${2 n} \choose {n}$ is divided by $k$. Find all $k$ for which the sequence $(r_n)_{n=1}^{\infty}$ is eventually periodic.
Let $n$ be a positive integer and $A$ be a family of subsets of the set $\{1,2,...,n\},$ none of which contains another subset from A . Find the largest possible cardinality of $A$ .