A natural number is called triangular if it may be presented in the form $\frac{n(n+1)}2$. Find all values of $a$ $(1\le a\le9)$ for which there exist a triangular number all digit of which are equal to $a$.
1971 Bulgaria National Olympiad
Day 1
Prove that the equation $$\sqrt{2-x^2}+\sqrt[3]{3-x^3}=0$$has no real solutions.
There are given $20$ points in the plane, no three of which lie on a single line. Prove that there exist at least $969$ quadrilaterals with vertices from the given points.
Day 2
It is given a triangle $ABC$. Let $R$ be the radius of the circumcircle of the triangle and $O_1,O_2,O_3$ be the centers of excircles of the triangle $ABC$ and $q$ is the perimeter of the triangle $O_1O_2O_3$. Prove that $q\le6R\sqrt3$. When does equality hold?
Let $A_1,A_2,\ldots,A_{2n}$ are the vertices of a regular $2n$-gon and $P$ is a point from the incircle of the polygon. If $\alpha_i=\angle A_iPA_{i+n}$, $i=1,2,\ldots,n$. Prove the equality $$\sum_{i=1}^n\tan^2\alpha_i=2n\frac{\cos^2\frac\pi{2n}}{\sin^4\frac\pi{2n}}.$$
In a triangular pyramid $SABC$ one of the plane angles with vertex $S$ is a right angle and the orthogonal projection of $S$ on the base plane $ABC$ coincides with the orthocenter of the triangle $ABC$. Let $SA=m$, $SB=n$, $SC=p$, $r$ is the inradius of $ABC$. $H$ is the height of the pyramid and $r_1,r_2,r_3$ are radii of the incircles of the intersections of the pyramid with the plane passing through $SA,SB,SC$ and the height of the pyramid. Prove that (a) $m^2+n^2+p^2\ge18r^2$; (b) $\frac{r_1}H,\frac{r_2}H,\frac{r_3}H$ are in the range $(0.4,0.5)$.