Let $M$ be a point on the altitude $CD$ of an acute-angled triangle $ABC$, and $K$ and $L$ the orthogonal projections of $M$ on $AC$ and $BC$. Suppose that the incenter and circumcenter of the triangle lie on the segment $KL$. (a) Prove that $CD=R+r$, where $R$ and $r$ are the circumradius and inradius, respectively. (b) Find the minimum value of the ratio $CM:CD$.
1991 Bulgaria National Olympiad
Day 1
Let $K$ be a cube with edge $n$, where $n>2$ is an even integer. Cube $K$ is divided into $n^3$ unit cubes. We call any set of $n^2$ unit cubes lying on the same horizontal or vertical level a layer. We dispose of $\frac{n^3}4$ colors, in each of which we paint exactly $4$ unit cubes. Prove that we can always select $n$ unit cubes of distinct colors, no two of which lie on the same layer.
Prove that for every prime number $p\ge5$, (a) $p^3$ divides $\binom{2p}p-2$; (b) $p^3$ divides $\binom{kp}p-k$ for every natural number $k$.
Day 2
Let $f(x)$ be a polynomial of degree $n$ with real coefficients, having $n$ (not necessarily distinct) real roots. Prove that for all real $x$, $$f(x)f''(x)\le f'(x)^2.$$
On a unit circle with center $O$, $AB$ is an arc with the central angle $\alpha<90^\circ$. Point $H$ is the foot of the perpendicular from $A$ to $OB$, $T$ is a point on arc $AB$, and $l$ is the tangent to the circle at $T$. The line $l$ and the angle $AHB$ form a triangle $\Delta$. (a) Prove that the area of $\Delta$ is minimal when $T$ is the midpoint of arc $AB$. (b) Prove that if $S_\alpha$ is the minimal area of $\Delta$ then the function $\frac{S_\alpha}\alpha$ has a limit when $\alpha\to0$ and find this limit.
White and black checkers are put on the squares of an $n\times n$ chessboard $(n\ge2)$ according to the following rule. Initially, a black checker is put on an arbitrary square. In every consequent step, a white checker is put on a free square, whereby all checkers on the squares neighboring by side are replaced by checkers of the opposite colors. This process is continued until there is a checker on every square. Prove that in the final configuration there is at least one black checker.