2021 Adygea Teachers' Geometry Olympiad

1

a) Two circles of radii $6$ and $24$ are tangent externally. Line $\ell$ touches the first circle at point $A$, and the second at point $B$. Find $AB$. b) The distance between the centers $O_1$ and $O_2$ of circles of radii $6$ and $24$ is $36$. Line $\ell$ touches the first circle at point $A$, and the second at point $B$ and intersects $O_1O_2$. Find $AB$.

2

In triangle $ABC$, the incircle touches the side $AC$ at point $B_1$ and one excircle is touching the same side at point $B_2$. It is known that the segments $BB_1$ and $BB_2$ are equal. Is it true that $\vartriangle ABC$ is isosceles?

3

In a triangle, one excircle touches side $AB$ at point $C_1$ and the other touches side $BC$ at point $A_1$. Prove that on the straight line $A_1C_1$ the constructed excircles cut out equal segments.

4

Two identical balls of radius $\sqrt{15}$ and two identical balls of a smaller radius are located on a plane so that each ball touches the other three. Find the area of the surface $S$ of the ball with the smaller radius.