Problem

Source:

Tags: Recursive Sequences



The first four terms of an infinite sequence $S$ of decimal digits are $1$, $9$, $8$, $2$, and succeeding terms are given by the final digit in the sum of the four immediately preceding terms. Thus $S$ begins $1$, $9$, $8$, $2$, $0$, $9$, $9$, $0$, $8$, $6$, $3$, $7$, $4$, $\cdots$. Do the digits $3$, $0$, $4$, $4$ ever come up consecutively in $S$?