Problem

Source:

Tags: Linear Recurrences



The sequence $\{a_{n}\}_{n \ge 1}$ is defined by \[a_{1}=1, \; a_{2}=12, \; a_{3}=20, \; a_{n+3}= 2a_{n+2}+2a_{n+1}-a_{n}.\] Prove that $1+4a_{n}a_{n+1}$ is a square for all $n \in \mathbb{N}$.