Problem

Source:

Tags: Linear Recurrences



The Fibonacci sequence $\{F_{n}\}$ is defined by \[F_{1}=1, \; F_{2}=1, \; F_{n+2}=F_{n+1}+F_{n}.\] Show that $F_{2n-1}^{2}+F_{2n+1}^{2}+1=3F_{2n-1}F_{2n+1}$ for all $n \ge 1$.