Problem

Source:

Tags: number theory, greatest common divisor, Linear Recurrences



The Fibonacci sequence $\{F_{n}\}$ is defined by \[F_{1}=1, \; F_{2}=1, \; F_{n+2}=F_{n+1}+F_{n}.\] Show that $\gcd (F_{m}, F_{n})=F_{\gcd (m, n)}$ for all $m, n \in \mathbb{N}$.