Peter wrote:
Find all functions $f: \mathbb{N}\to \mathbb{N}$ such that for all $n\in \mathbb{N}$: \[f(f(f(n)))+f(f(n))+f(n)=3n.\]
We have that $f(f(f(1)))+f((1))+f(1)=3$,but every positive integer
number is greater or equal to $1$,therefore $f(1)=1$.
Let's suppose that we have proved that $f(k)=k$ for all $n\geq{k}$, and
let's prove that $f(n+1)=n+1$. If $f(a)=f(b)$ then $3a=f(f(f(a)))+f(f(a))+f(a)=f(f(f(b)))+f(f(b))+f(b)=3b$ so $a=b$.
We also have that $f(f(f(n+1)))+f(f(n+1))+f(n+1)=3(n+1)$,but if
$n\geq{t}=f(n+1)$ then $f(n+1)=t=f(t)$ $\Rightarrow$
$n+1=t$,contradiction. Therefore, $f(n+1)\geq(n+1)$.
Same way if $n\geq{t}=f(f(n+1))$ $\Rightarrow$ $f(f(n+1))=t=f(t)$
$\Rightarrow$ $f(n+1)=f(t)$ $\Rightarrow$ $n+1=t$ contradiction. And
again $f(f(n+1))\geq{n+1}$. In the similar way we can prove that $f(f(f (n+1)))\geq{n+1}$. So we get that
\[f(n+1)\geq{n+1}\]
\[f(f(n+1))\geq{n+1}\]
\[f(f(f(n+1)))\geq{n+1}\]
and consequently $3(n+1)=f(f(f(n+1)))+f(f(n+1))+f(n+1)\geq3(n+1)$ $\Rightarrow$ $f(n+1)=n+1$.
$\Rightarrow$
\[f(n)=n\]
for all $n\in{N}$.