Let ${\mathbb Q}^{+}$ be the set of positive rational numbers. Construct a function $f:{\mathbb Q}^{+}\rightarrow{\mathbb Q}^{+}$ such that \[f(xf(y)) = \frac{f(x)}{y}\] for all $x, y \in{\mathbb Q}^{+}$.
Source:
Tags: function, Functional Equations
Let ${\mathbb Q}^{+}$ be the set of positive rational numbers. Construct a function $f:{\mathbb Q}^{+}\rightarrow{\mathbb Q}^{+}$ such that \[f(xf(y)) = \frac{f(x)}{y}\] for all $x, y \in{\mathbb Q}^{+}$.