Problem

Source:

Tags: geometry, 3D geometry, modular arithmetic, Diophantine Equations, pen



What is the smallest positive integer $t$ such that there exist integers $x_{1},x_{2}, \cdots, x_{t}$ with \[{x_{1}}^{3}+{x_{2}}^{3}+\cdots+{x_{t}}^{3}=2002^{2002}\;\;?\]