Show that $e=\sum^{\infty}_{n=0} \frac{1}{n!}$ is irrational.
Problem
Source:
Tags: integration, calculus, Irrational numbers
25.05.2007 03:24
Here's an outline of a proof : We establish that for any natural integer $n, e = \sum_{k=0}^n \frac 1{k!} + \int_0^1 \frac {(1-t)^n}{n!}e^t dt,$ then that for any positive integer $n, 0 < e - \sum_{k=0}^n \frac 1{k!} < \frac 3{(n+1)!}.$ We then proceed by contradiction. Historical remark : Hermite has proved in 1873 that $e$ is transcendental. That's historically the first "real" number for which we managed to prove the transcendental character.
25.05.2007 03:24
Maybe can you prove what you claim?
25.05.2007 03:24
Sure. We will show that first relation by induction. The base case is easy and left to the reader. Let $n \geq 0.$ Let us assume that $e = \sum_{k=0}^n \frac 1{k!} + \int_0^1 \frac {(1-t)^n}{n!} e^t dt.$ An integration by parts yields : $\int_0^1 \frac {(1-t)^n}{n!} e^t dt = \frac 1{(n+1)!} + \int_0^1 \frac {(1-t)^{n+1}}{(n+1)!} e^t dt,$ and so $e = \sum_{k=0}^n \frac 1{(n+1)!} + \int_0^1 \frac {(1-t)^{n+1}}{(n+1)!} e^t dt = \sum_{k=0}^{n+1} \frac 1{k!} + \int_0^1 \frac {(1-t)^{n+1}}{(n+1)!} e^t dt.$ Thus our result is proved by induction. Let $n$ be a positive integer. From the above, $0 < e - \sum_{k=0}^n \frac 1{k!} = \int_0^1 \frac {(1-t)^n}{n!}e^t dt < e \int_0^1 \frac {(1-t)^n}{n!}dt = \frac e{(n+1)!} < \frac 3{(n+1)!}.$ Let us then assume for sake of contradiction that $e$ is rational. Then, there exist $(a, b) \in \mathbb{N}^2 / e = \frac ab.$ Let $n$ be an arbitrary positive integer. From the above, we have $0 < \frac ab - \sum_{k=0}^n \frac 1{k!} < \frac 3{(n+1)!},$ which rewrites $0 < an! - b\sum_{k=0}^n \frac {n!}{k!} < \frac {3b}{n+1}.$ Especially, for $n = 3b,$ we have $0 < a(3b)! - b\sum_{k=0}^{3b} \frac {(3b)!}{k!} < \frac {3b}{3b+1} < 1.$ But this is impossible since $an! - b \sum_{k=0}^{3b} \frac {(3b)!}{k!}$ is an integer. Hence, $e$ is irrational.
23.12.2007 15:42
However, if we need just the irrationality there is a completely elementary proof. Assume $ e = \frac{p}{q}$ for some $ p, q \in \mathbb{N}$ with $ (p, q) = 1$ and $ q \ge 2$ - it is trivial to check, by an easy estimation, that $ e \in (2, 3)$. This leads to $ p \cdot (q - 1)! = \sum_{k=1}^q \prod_{j = k + 1}^q j + \sum_{k \ge q + 1} \frac{q!}{k!}$, thus $ \sum_{k \ge q + 1} \frac{q!}{k!} > 0$ is an integer. Hence let's keep in mind the relation $ \sum_{k \ge q + 1} \frac{q!}{k!} \ge 1$. On the other hand, $ \sum_{k \ge q + 1} \frac{q!}{k!} = \sum_{t \ge 1} \frac{1}{(q + 1) \cdots (q + t)} \le \frac{1}{q + 1} + \sum_{t \ge 2} \frac{1}{(q + t - 1)(q + t)}$, and by reducing terms, $ \frac{1}{q + 1} + \sum_{t \ge 2} \left( \frac{1}{q + t - 1} - \frac{1}{q + t} \right) = \frac{2}{q + 1} \le \frac{2}{3} < 1$, a contradiction.