Let $ABCDE$ be a convex pentagon with $AB = BC =CA$ and $CD = DE = EC$. Let $T$ be the centroid of $\vartriangle ABC$, and $N$ be the midpoint of $AE$. Compute $\angle NT D$
1998 North Macedonia National Olympiad
Prove that the numbers $1,2,...,1998$ cannot be separated into three classes whose sums of elements are divisible by $2000,3999$, and $5998$, respectively.
A triangle $ABC$ is given. For every positive numbers $p,q,r$, let $A',B',C'$ be the points such that $\overrightarrow{BA'} = p\overrightarrow{AB}, \overrightarrow{CB'}=q\overrightarrow{BC} $, and $\overrightarrow{AC'}=r\overrightarrow{CA}$. Define $f(p,q,r)$ as the ratio of the area of $\vartriangle A'B'C'$ to that of $\vartriangle ABC$. Prove that for all positive numbers $x,y,z$ and every positive integer $n$, $\sum_{k=0}^{n-1}f(x+k,y+k,z+k) = n^3f\left(\frac{x}{n},\frac{y}{n},\frac{z}{n}\right)$.
If $P$ is the area of a triangle $ABC$ with sides $a,b,c$, prove that $\frac{ab+bc+ca}{4P} \ge \sqrt3$
The sequence $(a_n)$ is defined by $a_1 =\sqrt2$ and $a_{n+1} =\sqrt{2-\sqrt{4-a_n^2}}$. Let $b_n =2^{n+1}a_n$. Prove that $b_n \le 7$ and $b_n < b_{n+1}$ for all $n$.