Let $a, b$ and $c$ be real numbers such that $0 < a, b, c < 1$. Prove that: $$\min \ \ \{ab(1 -c)^2, bc(1 - a)^2, ca(1 - b)^2 \} \le \frac{1}{16}.$$
Source: 2015 Cuba 2.5
Tags: algebra, inequalities
Let $a, b$ and $c$ be real numbers such that $0 < a, b, c < 1$. Prove that: $$\min \ \ \{ab(1 -c)^2, bc(1 - a)^2, ca(1 - b)^2 \} \le \frac{1}{16}.$$