Problem

Source: 2015 Cuba 2.4

Tags: number theory, Digits



Let $A = \overline{abcd}$ be a $4$-digit positive integer, such that $a\ge 7$ and $a > b >c > d > 0$. Let us consider a positive integer $B = \overline{dcba}$. If all digits of $A+B$ are odd, determine all possible values of $A$.