If $$\frac{x_1}{x_1+1} = \frac{x_2}{x_2+3} = \frac{x_3}{x_3+5} = ...= \frac{x_{1006}}{x_{1006}+2011}$$and $x_1+x_2+...+x_{1006} = 503^2$, determine the value of $x_{1006}$.
Source: 2012 Cuba MO 2.1
Tags: algebra, system of equations
If $$\frac{x_1}{x_1+1} = \frac{x_2}{x_2+3} = \frac{x_3}{x_3+5} = ...= \frac{x_{1006}}{x_{1006}+2011}$$and $x_1+x_2+...+x_{1006} = 503^2$, determine the value of $x_{1006}$.