Determine all the integers $a$ and $b$, such that $\sqrt{2010 + 2 \sqrt{2009}}$ be a solution of the equation $x^2 + ax + b = 0$. Prove that for such $a$ and $b$ the number$\sqrt{2010 - 2 \sqrt{2009}}$ is not a solution to the given equation.
Source: 2010 Cuba MO 2.1
Tags: algebra, trinomial, polynomial
Determine all the integers $a$ and $b$, such that $\sqrt{2010 + 2 \sqrt{2009}}$ be a solution of the equation $x^2 + ax + b = 0$. Prove that for such $a$ and $b$ the number$\sqrt{2010 - 2 \sqrt{2009}}$ is not a solution to the given equation.