Find all functions $f : R_+ \to R_+$ such that $$x^2(f(x)+f(y)) = (x+y)f(f(x)y)$$for all positive real $x, y$.
Source: 2007 Cuba MO 2.4
Tags: algebra, functional, functional equation
Find all functions $f : R_+ \to R_+$ such that $$x^2(f(x)+f(y)) = (x+y)f(f(x)y)$$for all positive real $x, y$.