Problem

Source: 2006 Cuba MO 2.4

Tags: algebra, function, functional



Let $f : Z_+ \to Z_+$ such that: a) $f(n + 1) > f(n)$ for all $n \in Z_+$ b) $f(n + f(m)) = f(n) + m + 1$ for all $n,m \in Z_+$ Find $f(2006)$.