Problem

Source: 2003 Cuba MO 2.5

Tags: algebra, inequalities



Let $a_1, a_2, ..., a_9$ be non-negative real numbers such that $a_1 = a_9 = 0$ and at least one of the remaining terms is different from $0$. a) Prove that for some $i$ $(i = 2, ..., 8$) ,holds that $a_{i-1} + a_{i+1} < 2a_i.$ b) Will the previous statement be true, if we change the number $2$ for $1.9$ in the inequality?