The roots of the equation $x^2 + (3a + b)x + a^2 + 2b^2 = 0$ are $x_1$ and $x_2$ with $x_1 \ne x_2$. Determine the values of $a$ and $b$ so that the roots of the equation $ x^2 - 2a(3a + 2b)x + 5a^2b^2 + 4b^4 = 0$ let $x^2_1$ and $x^2_2$.
Source: 2003 Cuba MO 2.1
Tags: algebra, polynomial, trinomial
The roots of the equation $x^2 + (3a + b)x + a^2 + 2b^2 = 0$ are $x_1$ and $x_2$ with $x_1 \ne x_2$. Determine the values of $a$ and $b$ so that the roots of the equation $ x^2 - 2a(3a + 2b)x + 5a^2b^2 + 4b^4 = 0$ let $x^2_1$ and $x^2_2$.