Problem

Source: Albania JTST 2015

Tags: number theory



For every positive integer $n{}$, consider the numbers $a_1=n^2-10n+23, a_2=n^2-9n+31, a_3=n^2-12n+46.$ a) Prove that $a_1+a_2+a_3$ is even. b) Find all positive integers $n$ for which $a_1, a_2$ and $a_3$ are primes.