Problem

Source: Albania JTST 2015

Tags:



$$\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\dots+\frac{1}{2014\cdot2015}=\frac{m}{n},$$where $\frac{m}{n}$ is irreducible. a) Find $m+n.$ b) Find the remainder of division of $(m+3)^{1444}$ to $n{}$.