Find the positive integer $n{}$ if $$\left(1-\frac{1}{1+2}\right)\cdot\left(1-\frac{1}{1+2+3}\right)\cdot\ldots\cdot\left(1-\frac{1}{1+2+\ldots+n}\right)=\frac{2021}{6057}.$$
Source: Moldova EGMO TST 2019
Tags: number theory
Find the positive integer $n{}$ if $$\left(1-\frac{1}{1+2}\right)\cdot\left(1-\frac{1}{1+2+3}\right)\cdot\ldots\cdot\left(1-\frac{1}{1+2+\ldots+n}\right)=\frac{2021}{6057}.$$