For an integer $m\ge 3$, let $S(m)=1+\frac{1}{3}+…+\frac{1}{m}$ (the fraction $\frac12$ does not participate in addition and does participate in fractions $\frac{1}{k}$ for integers from $3$ until $m$). Let $n\ge 3$ and $ k\ge 3$ . Compare the numbers $S(nk)$ and $S(n)+S(k)$
.