Let $k > 1$ be a positive integer and $n \ge 2019$ be an odd positive integer. The non-zero rational numbers $x_1, x_2,..., x_n$ are not all equal, and satisfy the following chain of equalities: $$x_1 +\frac{k}{x_2}= x_2 +\frac{k}{x_3}= x_3 +\frac{k}{x_4}= ... = x_{n-1} +\frac{k}{x_n}= x_n +\frac{k}{x_1}.$$What is the smallest possible value of $k$?
Problem
Source: 2019 Dürer Math Competition Finals Day2 E13 https://artofproblemsolving.com/community/c1621835_2019_
Tags: algebra, system of equations, number theory, System