Problem

Source: 2019 Dürer Math Competition Finals Day2 E4 https://artofproblemsolving.com/community/c1621835_2019_

Tags: combinatorics



In Miskolc there are two tram lines: line $1$ runs between Tiszai railway station and UpperMajláth, while line $2$ runs between Tiszai railway station and the Ironworks. The timetable for trams leaving Tiszai railway station is as follows: tram $ 1$ leaves at every minute ending in a $0$ or $6$, and tram $2$ leaves at every minute ending in a $3$. There are three types of passengers waiting for the trams: those who will take tram $ 1$ only, those who will take tram $2$ only and those who will take any tram. Every minute there is a constant number of passengers of each type arriving at the station. (This number is not necessarily the same for the different types.) Also, every tram departs with an equal number of passengers from Tiszai railway station. How many passengers are there on a departing tram, if we know that every minute there are $3$ passengers arriving at the station who will take tram $2$ only?