Let coefficients of the polynomial$ P (x) = a_dx^d + ... + a_2x^2 + a_0$ where $d \ge 2$, are positive integers. The sequences $(b_n)$ is defined by $b_1 = a_0$ and $b_{n+1} = P (b_n)$ for $n \ge 1$. Prove that for any $n \ge 2$, there exists a prime number $p$ such that $p|b_n$ but it does not divide $b_1, b_2, ..., b_{n-1}$.
Problem
Source: 2021 Saudi Arabia Training Lists p34 https://artofproblemsolving.com/community/c2758131_2021_saudi_arabia_training_tests
Tags: polynomial, number theory, divides