Find positive integers $a_1 < a_2<... <a_{2010}$ such that $$a_1(1!)^{2010} + a_2(2!)^{2010} + ... + a_{2010}(2010!)^{2010} = (2011 !)^{2010}. $$
Source: 2011 Saudi Arabia Pre-TST February 4.2
Tags: number theory, factorial
Find positive integers $a_1 < a_2<... <a_{2010}$ such that $$a_1(1!)^{2010} + a_2(2!)^{2010} + ... + a_{2010}(2010!)^{2010} = (2011 !)^{2010}. $$