Let $f = aX^2 + bX+ c \in Z[X]$ be a polynomial such that for every positive integer $n$,$ f(n )$ is a perfect square. Prove that $f = g^2$ for some polynomial $g \in Z[X]$.
Source: 2011 Saudi Arabia Pre-TST February 2.3
Tags: algebra, polynomial, Perfect Square
Let $f = aX^2 + bX+ c \in Z[X]$ be a polynomial such that for every positive integer $n$,$ f(n )$ is a perfect square. Prove that $f = g^2$ for some polynomial $g \in Z[X]$.