Problem

Source: 2011 Saudi Arabia BMO TST 1.1 - Balkan MO

Tags: Product, algebra, factorial



Let $n$ be a positive integer. Find all real numbers $x_1,x_2 ,..., x_n$ such that $$\prod_{k=1}^{n}(x_k^2+ (k + 2)x_k + k^2 + k + 1) =\left(\frac{3}{4}\right)^n (n!)^2$$