Find all polynomials $P$ with real coefficients such that for all $x, y ,z \in R$, $$P(x)+P(y)+P(z)+P(x+y+z)=P(x+y)+P(y+z)+P(z+x)$$
Source: 2011 Saudi Arabia BMO TST 2.1 - Balkan MO
Tags: algebra, polynomial
Find all polynomials $P$ with real coefficients such that for all $x, y ,z \in R$, $$P(x)+P(y)+P(z)+P(x+y+z)=P(x+y)+P(y+z)+P(z+x)$$